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The purpose of this paper is to review recent
progress in the actual construction of optimal non-
Vinear filters. Specifically, we will consider the
construction of numerical algorithms, which accept as
inputs noisy observations of a nonlinear function of
signal process and produce as outputs estimates of the
signal process. These algorithms, because of the
structure of the nonlinear filtering problem, can be
thought of conditional probability function generators.
A historical review of the theory and applications of
nonlinear filtering will be given, which will attempt
to catalog the seminal 1deas in the field as well as
some unsolved problems which are obstructing progress.

1. Introduction

History of the Theoretical Resolution

The theory of nonlinear filtering was initiated by
Stratonovich in [1) in 1960. He assumed that the
signal x(s,w) was a Markov diffusion process taking
values in , and further that observations were avail
able of the form

t
2(t.w) -ft h(s.x(s)) ds + v(t.w) (1.0)
0

where v(t,w) is a Brownian motion process #5 valued
with infinitesimal covariance A(t) and h is
reasurable function from (to, =) x &M to 4S. The
problem consisted of finding the conditional distribu-
tion of x(t) given z(s.wg for t? <s < t, asif
one is interested in estimating x(t) “on the basis of
knowledge of the observation sample function z(-,w),
this conditional distribution contains all the infor-

mation relevant to the estimation process. Let us
assume that x(t) possesses a transition density

plt.x,y) (i.e., P(x(t) ¢ A[x({o) = t)
:/’ p(tit,y) dy }
A

and further the following Lindeberg conditions hold

E(x(t+h) - x(t))|x(t) = y) = f(y)n + 0(h)“ .

£{ (x(tn) - x(e))(x(tsh) - x(t) )'[x(t) = y)
= aly) Q a'(y) heo(h)

Under these conditions and smoothness Koimogorov in (2]
demonstrated that
QE-AP

3% (1.2)

so-called backward equation. The equation defines the
evolution of the expectation of functions, the condi-
tional density is a’solution of (1.1) with initta)
value plo,x,y) = é&(x-y), or in other words p(t,x,y)
is the Green's function of (1.1). 1f on the other hand
the initial value is k{y), the solution is

E k(x(t))|x{o) = x) . A dual equation was also derived
as

(1.3)

where A {5 the formal adjoint of A and the general
solution of it is
Meax) = folt,z,x)u(z)dz

or probabilistically »(t,x) {s the density of x(t)
when x(o0) has density u . MNotice that p{.,.,y)
satisfies (1.1) while p(-,x,s) satisfies (1.2{.
Suppose k(x,t,z,) 1s the conditional density of x(t)
given z(s,w) tg <s <t , then Stratonovich showed,
using Bayes rule and truncating a Taylor series, the
equivalént of R

dk = A kdt + (h-hg)'R°V d 1 K (1.4)

where (1.3) is a random differential equation of [to
type, see {3). The initial condition o . S the
density u_of x(o), and Ry =/ h(t,y) k,t.y! dy with
dl = dz - hdt. In (6], Ito showed that if (1.1) holds,

f and ¢ are Lipshitz and then x(t) itself is the
solution of the Ito equation

dx = f(x)dt + o(x)ds {1.5)

where 3 is a Brownian vector process independent of
x(0) with infinitesimal spectral matrix Q.

NHow (1.4) is locally a description of the nonlinear
filtering problem, and since in Quantum Mechami¥s the
local description, the Schroedinger egquation,has a -
global analog the famous Feynman Path Integral, see{38)
and [39), one might ask, does the nonlinear filtering
problem possess a global description? In fact, this {s
the case, although it was not until 1965 in [7) that
this global description, The Representation Theorem,
was proposed. Assuming regularity conditions, see {8)
through [14], for the details®

. B efta(e) = x) w(x)
k{t,x) 3. At

A . 2
ﬁ A

(1.6)
where E%: means average with the observation path
fixed and
-1 ) t \ 2
Hy '-/;o h{s.xs)R " dz - 3 t°|'h(s'x5) ||R_1 ds
IR)
It {s interesting to nnse that the conditions for the

1This research was supported in part by the United States Air Force, Office of Scientific Research, Air Force

Systems Cormand, under AROSR Grant 71-2144,
The order within the trace is important here,

3actually, in [1] another form of (1.3) is given which requires to be valid in interpretation in terms of a

. 1nt¢grll detailed in {43].

Kushner in [5] was the first to derfve (1.3) in the Ito form,

See also {33].

Mortensen in (9] first recognized that the representation thearem was in fact derivable from the chain rule
#ar Radon-Nikodym derfvatives in function space; the most elegan® proof so far is given in [12), where 2 Hilbert
sasce setting reduces the nonlinear problen to a 1inear one, where the result is easy.

Aogroved for pwblic releass
1* c{buticon wlimited,



validity of (1.6) are conditions on the signal process
and the sensor or conditions, not a priori unverifiable
concitions on k such as; k be twice continuously
di;fzrentiable which is necessary for (1.4) to be
volid.

A largely heuristic approach to nonlinear
fiitering theory, the so-called innovations approach,
discovered by Frost in [15) and popularized by Kailath
and frost in a number of papers (see [16] for refer-
encas), hinges on transforming the obsarvations to pro-
duce a new observation process that is white and
consists of “new information" at each instant,
generalizing ideas of Kolmorogorov in {17]. While
these ideas are clearly useful, a number of results
claimed have yet to be proven.

It seems convenient to consider here the discrete
sequential version of the representation theorem as
for numerical purposes it seems the most useful--see
[17] for an early occurrence of this result. Suppose
toth 2(t,w) and x(t,w) are sampled with sampling
interval A and denote

Xy = x{n a + to.w)

X8 z(n 2+ to,w) -z{{n-1) 2+ to.w)

Further, suppose that the conditional density of
Xps] =y given xp = x is Sp(y,x) and the condi-
tional density of zp given xp = x is Dplx,zp)
then

6
Prerly) =f‘ Splysx) Folx) dx
Falx)

wiare P _(F_ }

(1.8)

* v, 0, (x,z.) P.(x) (1.9)
5 are respectively the conditional
densities o? Xn given 2Zp.y ....20s {(Zps Zp-1.. .27},
and ypn 15 the appropriate normalizing term. MNote
that (1.8) represents model following while (1.9) re-
presants the influence of the new piece of data, the
analog of the contributing factors of estimate
dynamics in the linear case.

2. Problems Arising in Humerical Pe-lization

Let us note that in continuous time both the local
and qlobal dynamics of the conditional density (1.4)
and (1.5) involve a non-pointwise limiting process,
specifically a limit in the mean because of the
definition of the stochastic integral--see [6]. In
view of this finding, the value of k(t,x,z ) when a
sampla path z(-,w) is given by direct difference
approximation of (1.4) or replacing x(t,w) in (1.6)
by rancdem process which has at most finite number of
values for each w can lead to divergent approxima-
tions negative values for the approximations to the
dansity k(%t,x) in the case of (1.4) and in general
disasterous numerical behavior.

It is also a problem, illystrative of our last
remarks, to produce numerically the continuous time
white noise processes sample functions, in fact, it
was shown by Wong and Zakai in [18] that the solution
of the scalar stochastic differential equation

dx = f(x) dt + a(x) d3
is in general different from the limit of
&0 = ) + olxg) ¥, (2.1)

where W, is the derivative of an absolutely

continuous function and such that

5('~|H) - 3(':') - 'i’“j;tun(s) ds

in fact, x* = lin xn satisfies
dx* = f(x*)dt + %&, (x*)dt + o(x")ds (2.2)

On the other hand, numerous procedures for computer
realization of approximate white noise secuences exist,
although most of them are fairly poor 2pproximations,
especially the canned subroutines avaiiable for the
1BM and CDC machines, and most of the others pass
statistical tests which Cegend fundamentally on their
assumed ergodicity. In [13], Senne develops a
generator which is not only machine-independent’ but
further passes the Kolmogorov-Smironov test for
distributional fit, For all generators judicious
choice of the seed is important.

It appears then that it is preferable to sample
both the signal, x(t,w) and 2z(t,w) at a rate fastar
enough not to lose information relative to the
continuous problem--see [20] and {21] for an analysis
which determines the sampling rate for the phase
demodulation problem-- and to use (1.8) and (1.9) to
realize the nonlinear filter.

Another numerical problem is that in order to
evaluate filter performance, Monte Carlo runs must be
performed. This requirement taxes the ability of
modern third generation digital computers for probiems
with low state dimensions signal processes. Further,
the number of Monta Carlo repetitions must be large
enough %o provide small enough confidence bands on the
error performance so that the optimal filter per-
formance can be meaningfully compared with sub-optimal
filters--see [2?2). Hopefully, more research on
a priori beounds will eliminate the need for costly
Monte Carlo simulations. Promising research in this
direction is reported in [23].

Finally, I think it is aopropriate at th.s point
to indicate whv 1t is i=portant to undertaks numerical
realization studies. Frimarily these studies are
important in order to conclusively demenstrate the
deqgree of sup2rior error performance which can be
achieved using the optimal nonlinear filter. A sub-
sidiary benefit is that insight is gained on the
behavior of noniinear filters. Eecause of a paucity
of examples where closed form solutions exist--see[24]
for a number of such examples--there are few opportu-
nities to check conjectures as well as to gain insight
into what properties might be generally true. Without
examples, the field of nonlinear filtering could
easily develop into a stale effete area wnich dies by
feeding on itself and i5 overburdened by work which is
neither good mathematics nor useful engineering.

3. Conditional Density Representation

It is clear that for digital computer iteration
of (1.8) and (1.9) amap T from a subset L of
[o,1]¥ to a finite dimensiunal vector space K must
be given--here y is a subset of 4. If y s
compact, the map can be fixed, while if y is not
compact, the map rust change with time. Scme examples
will clarify the general idea.

Example 1 (sea [25] )

L = CO("’.“‘) , d = l

fS:acifical]y the proof ¢f the innovations theorem in [15] is wrong. ]
“A11 variahles can take vector values and the integral may be mul:\—d]mons1onai.
Or. Senne informs me that the generator has been realized on an H.P.565 prograrable hand-calculator, so that

base Z assumptions in [19] are unnacessary.

“Matice that generally error performance of sub-optimal filters must be evaluated by “onte Carlo methods.
Furthar, the statistical design of the Monte Carlo trials mustallow for the nonergodic nature of the error.



(T #)l0) = {Pale} Py(x)

oo 2M4)
s the average of P, over a ball-centered at «x.

n “nin.2
5t valnz * B (M)

?
where M s an integer and “nln-? and “nln-? are

bojn-2 = € Xoltg +ooe2yy)
2 : ¢ g
“nine2 * Elxp l2g. 02y y) - “n|n-2
and the ~ superscript denotes averaging with respect
to M+ n-1

§ M n-1
Tn_] (Tn_‘ Pn-l)(;) . JE] Pn_](xj ) S(x-xj ).

T:_‘ denote a choice of pre-image of an element in
the range of Tn_].

Example 2 d = 2 (see [29] )

T p) =4 {x", y"
(T Pn) {"(x* Yy )}izl...zm. j=l... 2000

5n(x.y) denotes the average of P" over a ball of
small radius centered at (x,y)

Y . s M (i-M-1)e," + ‘2 (3-t-1)e,"
Vj" Enjn-2 * 2MeT 21T E =2
M and N are integers
x'", gi" are eigenvalue and eigenvectors of Sn[n-?
where ' .

Sn!n-Z * Ry Xy 12geee 2n.2) - Yain-2% nin-2

“nln-2 ° Exlz ceee2y g)

and - superscriot dennte averaging with respect to the

density
2M+Y 200 | . )
1Py G0Nyt seea]T) sty h.
i1 g ™ J :
Example 3 L s the set of continuous probability
densities on the Torus
TP = {a"
n :1.12....zr}
ll"! bl Nj
N, are integers, and a" are fourier coeffi-
J : L.ty
cients of P (see {27] ).
Exarole 4 (see {28] )

The map T assigns to a function a finite subset,
its interpolative spline under tension coefficients.

frarple § (see [49) )
The rap T assigns to a function a finite subset
of 1ts coefficients in a Causs-Hermite expansion,

Example 6 (see [20]), {26} )

L is the set of functions on the Torus in Rd
and T assigns to a function 1ts values on a uniform
grid of meshes

) 8

byt by 0t

'
tn each conrdinate,

{ses 130) )

The map T assigns to a function a finite subset
of 1ts non-interpolative splire coefficients,

Evanple 7

Example 8 ( see {311 )

The map T assiqns to a function coefficients of
a least squares or L° fit of the function to a finite
linear combination of functions.

In a1l nf these cases (1.8) and (1.9) are
approximated for synthesis purposes by the vector
matrix recursion relation
¥(n) Jn-l

9 5 (3.1)

9
where J  is the image of either Fn(x) or Pn(x)

indicates that J" must be re-

normali‘ed ar transformed so that a canonical choice of
pre-image ot J _, which we dennte by T* J_, is a
density. tThe r@lation 11.1) can be arrived at in the
following way. First, one nntes that in the one-step
predictor case, for erample

Poagx) = ~,nf, S(rav) D lyza) P(y) dy

under Tn and ¢

. . ’
ey f’ 2(0y) Dlyaz,) T, T(P (V)] dy
and applying Tn*l to both sides, it follows that

. .
0ol * Vool { .n_[' 5(x.y) Bplyszy) T, < (y) dy

which is equivalent to (3.i). A problem which leaas ::
numerical in<tability is the following; suppose (Tn,
and {T;) are chosen and the relation

Jn =

K(r) 3, (3.2)

is iterated, the sequenca T‘ J_ does not always
remain positive, even whan “Jgo  is a vector with
T Jo positive. [n Lxarple 5, a convenient and

effective modification of (3.2) to preserve positivity
is redefining J" as

) = max (2,(k(m)3, (1))

In examples 1, 2 and 6, T: can be chosen so that the
above negativity effect does not arise.

for problems where the signal process {s a
degenerate random process (i.e., a random variable),
the representation theorem gives an explicit expression
for the conditional density and the prcblem of re-
presenting the density is trivial-~-see [32]) for results
concerning this degyenerate case.

Thepoint mass representation, Examples 1 and 2,

was the first one considered and, in fact, can be made

9The choice depends on whether cne wishes to synthesize the filter or one-step predictor,



quite accuracy by increasing the number of grid points
urtil the signal estimates for a fixed sequence of
obsarvations agree to say four places by successive
choices of finer subdivisions of the grid, The
accuracy ohtained by this method is not quite
unexpscted--see for exampie the discussion on Page 4 of
[31), where coincidence of form {s compared with
retric closeness, The drawback of the point mass
rethod consists of the large computation time per
estirmate, and in fact the other representation

rethods were motivated by the desire to cdecrease this
estimate time, while preserving a given accuracy re-
lative to a point mass accuracy benchmark., A some-
what different approach to the representation problem
censist of determination of a perturbation series for
Pn and Fp in (1.8) and (1.9) when Sp(y,x) depends
on a parameter q: for example, suppose

\ ey
Spiney) = == e
v znq

then Fn and Pn can be determined as series in q,
see (35) and (36] for complete details. This latter
approach {s numerically investigated in {36]).

The representation problem is quite important in
that the time between estimates can be improved by an
order of magnitude through a careful choise of the
representation. While clearly this problem of
representation is important and deserves careful study,
it seems to be a second order effect relative to
corputation time of estimates, while the choice of
synthesis device is first order. In a later section
we will discuss other synthesis devices which promise
two or more orders of magnitude speed improvement over
synthesis by third generation sertal digital computers.

8. A Typical Problem

The problem of phase demodulation is a problem of
Tow state dimension and has been extensively in-
vestigated both from the point of view of optimal and
suboptimal desinn--see {20) for references to «
universally used suboptimal design, the phase tock

loop. For this problem the following model is
appropriate:
1 !
Xpa] 2 Xp t A X
7 ; (4.1)
*nel * ¥p * Y,

where un 1% a Gaussian white noise sequence of zero
mean and variance &:q. The initial condition on (4.1)
is bivariate normal and independent of the plant noise
un. The observation process is
L} L]

*
+
Zp = cos xg bV,
) (4.2)
7, =

are independent Gaussian white noise

' 2
+
sin AN

1
where Yn

sequences of zero mean and variance r/:, and uncor-
related with x5 , x4 and up. The sampling rate &

is chosen as y
b e aNZ (D)

on tha basis of a linear analysis to assure good
approximation of continuous data--see [21] and {26).

If the sensor were 1inear, the Wiener theory would
:how that the mean square error in estimating phase
s
3/5
k= Y2 qh r

for continuous observations, which, of course, is a
lower bound on the mean square error of the phase
demodulation problem,

The cyclic toss function, 1/2(1 - cos(xp - x%))
was considered originally in {4) and redlscovcrea in
[40, and still later in [41]), al) in the context of a
less realistic phase demodulation problem where the
phase is Brownian motion'", instead of the integrated
Brownian motion model represented by (4.1). This
cyclic loss function is appropriate for prohlems where
one is interested only in estimating relative phase.
The cyclic estimate that x5 , which minimizes the
cyclic loss, is the arqument of

2 2-/A

n A -,’ ‘/. ix
a" 0 i e J(x,y)dx dy ,
1o (2n)’ Y0 7o "

where . (x,y) is the conditional distribution of x;

mod 2-, xh mod 2n/1. given the observations. In fact,
by consideration of the estimation of relative phase,
the relevant conditional distribution for filtering can
be taken as the distribution on Torus, T arising from
conditjonal distribution of phase and phase rate,

Xn o ¥ qiven the observations, J.(x,y), where

2n )

plxy) = Lov e 2w,y e S (4.3)

Uyl

for {(x,y)¢T. Extensive Monte Carlo simulation of the
cyclic nonlinear filter has shown that the cyclic
estimate achieves a 3-db error performance {rprovement
over the phase lock loop--see (42). The first results
were ootgined for a single q and a point mass filter,
ses evarple 6 of Section 3, and for each value of &,
three hours of 6600 C.P.U. were required. Later, by
using the Fourier representation of the density, the
C.P.4. time was cut by a factor of 10, Finally, in
{43] we demonstrated that mean square error for the
optimal demndulator was incdependent of q. Details on
the representation, Example 7, Section 3. can be found
iy [44]).

1t 1s clear from this example that, while
significant err-r variance reduction is possible with
a serial digrial computer as a rezlization device, the
massive comrutational task associated with accurate
synthesis and Monte Carlo ~=ror analysis limit the
state dimension of the nonlinear filters one can
effective.y build and analvze.

5. More tfractive Synthesis Devices

It became clear very eariy that serial realization
was effectively speed-limited by the convolution task,
(1.2). necessary to “update” the a priori conditional
density to obtain the a posteriori conditional density
for the state A seconds later, when a new piece of
data {5 received. from the structure of (1.8), it is
clear that immense est.mate computation time reduction
can be nbtained by using a, lle) digital computer as
the synthesis tool. An ara’ ; of the possible
savings is given in {29].

%aen the phase {s Brownian motion, :rror variance improverent due to using the nonlinear filter is only
about .7 db, and further, the absence of the necessity of phase rate tracking makes the problem of little
practical interest, except perhaps for classroom discussion.



A feasib’lity study of the synthesis of optimal
filters using a hybrid system to achieve parallelism
for the convolution task is reported in [46]. This
study used a serial machine to simulate a contemporary
hybrid system with MCBSSL as the simulation lanquage.
Tha results obtained in this feasihility study
indicated that a hybrid system was capable of
achieving considerable time saving, albeit with only
two place estimate accuracy. In the last year, a
hybrid nonlinear filter was built at the Labatorio
d'Automatico, University Polytecnico Barcelona, Spain,
using an Electronic Associates EA1-680 hybrid system
with a floating point processor. This hybrid non-
linear filter achieved the characteristics predicted
in [46], and the results are reported in [35].

Another approach is using a contemporary
parallel machine, say the Illiac, as the synthesis
tool; preliminary estimates indicate that three-hour
Monte Carlo runs on the CDC 6600 can be accomplished
in three minutes on the Illiac and, more importantly,
nonlinear filters corresponding to problems with four-
state dimensional signal process models can be built
and Monte Carlo error analysis performed routinely.
This is an area of our current res=arch interest.

Finally, it is clear that spacial purpose serial
machines fabricated on acoustic-optic or surface wave
srincipies in theory and for simple signals in
practice can achievae temporal convolutions in 6600
cycle time about 200 nanoseconds--see [47]. In (48],
an approximate homomorphism between the Banach
Algebra B, of periodic functions of one variable and
the Banach Algebra B. of functions on the r-

The multiplication in these
Yhen r = 2,

dimensional torus.
algebras is the appropriate convolution.

then F ang G in By , we have
2(F*G) = s(F)* 2(G) (5.1)
b T
whare is the appropriate ring homomorphism, The

~@1ning.of {5.1) is that (1.8) can be computed by
performing a temporal convolution of

9\'3(‘) :(Fn) v

for the phase demodulation problem and tne temporal
convolution can be done using surface waves generated
by 4(Fn) on a piezo-electric crystal with photo-
graphiczally deposited metallic fingers corresponding
to 3(Sn). This becomes most intaresting when Sp s
irdapendent of n as in the case of the phase
demodulation problem. Such a device 15 cirreatly in
tha planning stage and is a joint research projact

of the author and Or. Eugene Dieulesaint of Lcole
Superieur de Chieme ot Physie, Paris.

and

6. Conclusions

In this paper we have raviewed some of the first
1ttempts to synthesize the optimal nonlinear filter.
The problem itself, while extremely important, induces
solution methods which are extremely time consuming
bocause of what Ballman has aptly called the curse of
dime sionality.
are  opli-able to a wide variety of problems,
inciuding, for example, the solution of parabolic
partial differential egquations in more *han one space
dirension and are of importance if only for this
application. This sturvay will have served its
purpose if it succeads in interesting reszarch
workers in pursuing these problems fu'tnar and
daveloping new methods of practical synthasis.

The current technics, while primative,
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